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Chapter 1

Introduction

The hermiticity of a Hamiltonian is a sufficient–yet not necessary–condition for the reality
of its energy eigenvalues [1, 2, 3]. Non-hermitian Hamiltonians (NHHs) arise naturally as
effective descriptions of dissipative systems from the classical (e.g., in acoustics [4], pho-
tonics [5, 6, 7], optical microcavities [8, 9], magnetic systems [10], and population biology
[11]) to quantum (e.g., particle decay [12, 13], condensed matter systems [14], and superra-
diance [15], in addition to conventional open quantum systems) regimes [16]. NHHs admit
complex-valued eigenspectra, resulting to the emergence of exceptional points (EPs) in pa-
rameter space where multiple eigenmodes (i.e., both eigenvalues and eigenvectors) coalesce
and bifurcate under sublinear scaling [17]. Beyond signifying phase transitions, nontrivial
effects were theoretically predicted and furthermore realized in a wide variety of experimen-
tal platforms [18, 19, 20, 21, 22, 23, 24] in close proximity to EPs; enhanced sensing [25],
dynamical acceleration [26, 27], accelerated generation of entanglement [28], induced chiral-
ity [20, 21], skin effect [29, 30, 31, 32, 33], unidirectional invisibility [34, 35], as examples of a
rich literature [16]. It is a contemporary interest to understand and harness non-Hermitian
phenomena for potential practical applications.

The universal strategy to study non-Hermitian quantum dynamics is through the GKSL
(Gorini–Kossakowski–Sudarshan–Lindblad) master equation framework. Neglecting the quan-
tum jump terms, e.g., experimentally via postselection, yields an effective non-Hermitian
Hamiltonian exhibiting Hamiltonian Exceptional Points (HEPs) [28]. A more complete de-
scription of an open system retains this term, and are therefore concerned with Liouvillian
Exceptional Points (LEPs). The latter has recently garnered tremendous research attention
[27, 36, 23, 37, 26, 38]. Within both formalisms, hermitian quantum systems are embed-
ded with effective non-Hermitian features, arising from a Markovian environment that is
weakly coupled. To the best of our knowledge, apart from Refs. [39, 40, 41, 42] (which are
generalizations of the GKSL equation, and therefore phenomenological), no other studies
has addressed intrinsically pseudo-Hermitian systems interacting with a structured thermal
environment.

Pseudo-hermitian Hamiltonians (PHHs) are related to its hermitian conjugate via a sim-
ilarity transform through a Hermitian and invertible metric η, Ĥ† = ηĤη−1 [43, 44]. There-
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fore, their eigenenergies are either all real or they come in complex conjugate pairs. This
class of non-hermitian hamiltonians encompasses PT -symmetric systems, where η is P ;
and hermitian hamiltonians, with η as the identity. Pseudo-Hermitian Hamiltonians satisfy
a modified von-Neumann equation ∂

∂t
(ρη) = 1

iℏ [Ĥ, ρη], and a modified interaction picture
U(t)ρηU−1(t), in which frame one may perform the Born-Markov perturbative procedure.
Significantly, a PHH open to a structured environment can be mapped to a hermitian sys-
tem interacting with environments obeying the Born-Markov approximation in addition to
a special environment which is treated properly without approximations, accounted by the
pseudo-hermitian decay terms (hence opening the possibility to study strongly coupled non-
Markovian interactions). This configuration encompasses a wide class of systems where the
interplay of non-hermitian and thermal effects is relevant, including as a concrete example
a nonhermitian transmon [37] immersed in thermal phononic or spin baths.

Master equations of the Redfield form in general do not recast to a GKSL form, and
therefore they are not a completely positive and trace preserving (CPTP) map [45, 46, 47].
However, GKSL equation invokes the secular (rotating wave) approximation, which fails
when the system’s energy levels become near degenerate (occurring precisely around excep-
tional points). Furthermore, quantum coherent effects are more comprehensively incorpo-
rated through a nonsecular theory—what are the manifestations of nonsecular effects in the
context of pseudo-hermitian quantum dynamics? A master equation of a Redfield form is an
appealing option to address these questions, yet the very first steps of the usual microscopic
derivation is rendered invalid once the Hamiltonian is not anymore Hermitian.

In this thesis we develop a nonsecular quantum master equation which deals directly
with a pseudo-hermitian quantum system. This takes the microscopic Redfield form with
a few important generalizations, e.g., in the broken phase, the environment spectral den-
sity admits complex Bohr frequencies. Our approach tackles non-Hermitian open quantum
dynamics from a fresh angle, elucidating (1) the interplay of thermal and non-hermitian
effects, and (2) the impacts of temperature to exceptional points, while treating the system
fully microscopically. This formalism further addresses the thermalization behaviour of a
pseudo-hermitian Hamiltonian [48, 49]. We apply the Pseudo-hermitian Redfield Equation
(PHRE) to study central and overlooked problems in quantum dynamics. Namely, we study
pseudo-hermitian effects in (1) a triangular hamiltonian, (2) gain-loss PT -symmetric qubit
hamiltonian [50], and (3) gain-loss quasi-degenerate three-level system. As there is currently
no numerically exact method for this class of systems, we compare with the analogous gen-
eralized Lindblad equation (GLE) described in Ref. [40]. With the PHRE formalism, we
highlight a number of key new results:

(1) Opening the pseudohermitian quantum system to a thermal environment displaces
exceptional points in parameter space. These LEPs are typically of lower order than the
corresponding LEPs as the system is closed.

(2) The extent of displacement of the LEPs depends on temperature, coupling strength,
and structure of the thermal bath. Specifically, Ohmic baths display this behaviour while
superohmic baths do not. Both dependence and selectivity offer promise of quantum sensing
and information processing applications.
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(3) We introduced a generalized spectral density of the thermal bath to include responses
from imaginary Bohr frequencies. While arising from a mathematical motivation, this ad-
ditional and unprobed degree of freedom can have interesting implications on both the dy-
namics and eigenspectrum of the pseudohermitian system.

(4) Prethermalization behaviour arise from nonhermitian gain-loss terms, manifesting in
the three level PT −symmetric Hamiltonian. Here, integrability breaking is induced by the
gain-loss term instead of a small splitting, since excited states are fully degenerate.

(5) The steady-state of the normalized system density matrix of a pseudohermitian Hamil-
tonian can be highly nontrivial and distinct even qualitatively from the Gibbs state. For in-
stance, for the three level PT −symmetric Hamiltonian with otherwise identical parameters,
simply varying temperature can modify whether the excited states (experiencing gain-loss)
is more populated than the ground state or otherwise, at steady state.

(6) We push the limit of the PHRE method through investigating an example where
unphysical results are predicted. PHRE suffers from the detriments of Redfield QME not
being a CPTP map, with particular systems amplifying this problem. For a wide range of
systems we study in the main thesis, we confirm numerically that these problems do not
arise.

This thesis is organized as follows. In Ch. 2 we review the pseudo-hermitian formulation
of quantum mechanics and derive the Pseudo-Hermitian Redfield Quantum Master equa-
tion. We apply this method to investigate archetypal pseudohermitian systems: a triangular
Hamiltonian in Ch. 3, the two-level gain-loss PT -symmetric Hamiltonian in Ch. 4, in Ch.
5 we discuss the three-level analog, and in Appendix C we discuss the asymmetric σy-type
Hamiltonian. We discuss and conclude in Ch. 6. Appendix A concerns pseudo-hermitian
master equations in Lindblad form and Appendix B discusses briefly the generalized non-
hermitian Redfield Master Equation.
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Chapter 2

Pseudo-hermitian Redfield Master
Equation

Before we detail the derivation of the Pseudo-hermitian Redfield Master Equation, which
builds on the bare Redfield equation, first we argue why the latter is not applicable to tackle
systems relevant in this thesis. There are two main reasons:

1. In contrast to equations in the GKLS form, Redfield equation cannot nicely segregate
the quantum jump and nonunitary coherent terms (see Appendix A). Such a separation
is necessary to construct an effective nonhermitian Hamiltonian, and it requires making
the secular approximation.

2. Incorporating spontaneous decay terms is critical to model nonhermitian systems.
However, due to its constraints standard Redfield equation cannot model spontaneous
decay (i.e., through having a special kind of decay bath). This is somewhat obvious
from symmetry arguments (namely the system coupling operator must be of the form
Ŝ ∝ |i⟩⟨i|, one will find this yields no dynamics.). The decay terms can be added
by hand in the equations of motion, but then the objective of this thesis is to study
emergent effects from microscopic principles.

Now that some motivation have been laid out we start the derivation of PHRE. An η−pseudo-
Hamiltonian ĤS satisfies

Ĥ†
S = ηĤSη

−1, (2.1)

where the metric η is both Hermitian and invertible. Particularly, η is of indefinite signature:
If η is a positive definite hermitian metric then the eigenvalues must be real, and cannot be
complex. To see this, one can calculate ⟨ψ|ηH|ψ⟩ for an eigenstate and use the fact that
⟨v|η|v⟩ is nonzero.The density matrix of a pure state is given by ρ = |ψ⟩⟨ψ|, and with the
Schrödinger equation iℏ|ψ̇⟩ = ĤS|ψ⟩ we obtain

ρ̇ = |ψ̇⟩⟨ψ|+ |ψ⟩⟨ψ̇|
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=
1

iℏ
ĤS|ψ⟩⟨ψ| −

1

iℏ
|ψ⟩⟨ψ| ηĤSη

−1︸ ︷︷ ︸
Ĥ†

S

⇒ ρ̇η = ∂t(ρη) =
1

iℏ
[ĤS, ρη], (2.2)

where the last line was obtained by multiplying with η on both sides. For small systems
the metric η can typically be found through trial-and-error, but systematic ways to obtain η
have been described in e.g., Refs. [51, 52]. In particular, for pseudo-Hermitian matrices with
real eigenvalues diagonalized by the matrix D, the metric η is given by (DD†)−1. Properties
of PHHs have recently been investigated in the context of quantum thermodynamics [53],
for example on the generalization of the Jarzynski equality [54].

Here, we couple this pseudo-Hermitian system to a bosonic bath. The full Hamiltonian
takes the form Ĥ = ĤS + ĤB + V̂ , with

ĤB =
∑
j

ωj b̂
†
j b̂j. (2.3)

Here, b̂†j (b̂j) is the creation (annihilation) bosonic operator of a mode j of frequency ωj.
The system-bath interaction Hamiltonian is given in a linear bipartite form (neglecting the
constant quadratic term), with a system operator Ŝ coupled to a bath operator B̂,

V̂ = Ŝ ⊗ B̂; B̂ =
∑
j

λj(b̂
†
j + b̂j). (2.4)

λj describes the system-bath coupling energy between mode j in the bath and the system.

Starting from Eq. (2.2) with Ĥ0 = ĤS + ĤB, we define the time evolution operator as

Û0 = e−
i
ℏ Ĥ0t, (2.5)

which satisfies

Û †
0ηÛ0 = η, (2.6)

where it is understood that η = ηS ⊗ I. Thus,

|ψ(t)⟩⟨ψ(t)|η = U(t)|ψ(0)⟩⟨ψ(0)|U †(t)η

= U(t)|ψ(0)⟩⟨ψ(0)|ηU−1(t)

= U(t)ρηU−1(t). (2.7)

Notice that:

∂(Û0ρηÛ
−1
0 )

∂t
=

i

ℏ
Ĥ0Û0ρηÛ

−1
0 + Û0

∂ρη

∂t
Û−1
0 − Û0ρηÛ

−1
0

i

ℏ
Ĥ0
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= Û0
∂ρη

∂t
Û−1
0 + [Ĥ0, (ρη)I ] (2.8)

where the subscript I indicates interaction representation, and that

Û0[Ĥ, ρη]Û
−1
0 = Û0[Ĥ0, ρη]Û

−1
0 + Û0[V̂ , ρη]Û

−1
0

= [Ĥ0, (ρη)I ] + [V̂I , (ρη)I ]. (2.9)

So, subtracting Eq. (2.8) by Eq. (2.9),

∂(ρη)I
∂t

= − i

ℏ
[V̂I , (ρη)I ]. (2.10)

The formal solution to the above is given by (from now on ρη → ρ̃, and ℏ ≡ 1)

ρ̃I(t) = ρ̃I(t0)− i

∫ t

t0

[V̂I(τ), ρ̃I(τ)]dτ (2.11)

To second order in the Dyson expansion

∂ρ̃I
∂t

(t) = −i[V̂I(t), ρ̃I(t0)]−
∫ t

t0

dτ [V̂I(t), [V̂I(τ), ρ̃I(τ)]]. (2.12)

At this point we follow standard Born-Markov derivation available in e.g., Refs. [47, 45, 46]
only that σ → σ̃ (note σ ≡ TrB ρ). Particularly, we make the weak coupling approximation
ρ̃(t) = ρS(t)η︸ ︷︷ ︸

σ̃(t)

⊗ρB for all times (i.e., automatically assuming factorized initial condition),

assume the bath is static, and take the partial trace over the bath of the above. This yields

∂σ̃I
∂t

(t) = −iTrB{[V̂I(t), ρ̃I(t0)]} − TrB{
∫ t

t0

dτ [V̂I(t), [V̂I(τ), ρ̃I(τ)]]} (2.13)

The first term can be shown to vanish if Tr[B̂ρB(0)] = 0 (automatically true for displacement
operators which is an average of linear values). Further approximations are enumerated as
follows: first Markov (fast bath) gives

∂σ̃I(t)

∂t
= −TrB{

∫ t

t0

dτ [V̂I(t), [V̂I(τ), σ̃I(t)⊗ ρB]]}, (2.14)

and second Markov:

∂σ̃I(t)

∂t
= −TrB{

∫ ∞

0

dτ [V̂I(t), [V̂I(t− τ), σ̃I(t)⊗ ρB]]}. (2.15)

Approximations conclude. Recall that

σ̃I(t) = eiĤstσ(t)ηe−iĤst, (2.16)
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so the time derivative is

∂σ̃I
∂t

(t) = eiĤst
∂ση

∂t
e−iĤst +

i

ℏ
[Ĥs, (ση)I ]. (2.17)

With

eiĤst
∂ση

∂t
e−iĤst = − i

ℏ
[Ĥs, (ση)I ]− TrB{

∫ ∞

0

dτ [V̂I(t), [V̂I(t− τ), σ̃I(t)⊗ ρB]]}, (2.18)

we rotate back to

∂ση

∂t
= − i

ℏ
e−iĤst[Ĥs, (ση)I ]e

iĤst − TrB{
∫ ∞

0

dτe−iĤst[V̂I(t), [V̂I(t− τ), σ̃I(t)⊗ ρB]]e
iĤst}

= − i

ℏ
[Ĥs, ση]− TrB{

∫ ∞

0

dτe−iĤst[V̂I(t), [V̂I(t− τ), σ̃I(t)⊗ ρB]]e
iĤst} (2.19)

Our present objective is to simplify the integral, and we start by organizing the integrand

[V̂I(t), [V̂I(t− τ), σ̃I(t)⊗ ρB]] = [ŜI(t)B̂I(t), [ŜI(t− τ)B̂I(t− τ), σ̃I(t)ρB]] (2.20)

where ⊗ have been suppressed. This expands to four terms

ŜI(t)ŜI(t− τ)σ̃I(t)B̂I(t)B̂I(t− τ)ρB (2.21)

− ŜI(t)σ̃I ŜI(t− τ)(t)B̂I(t)ρBB̂I(t− τ) (2.22)

− ŜI(t− τ)σ̃I(t)ŜI(t)B̂I(t− τ)ρBB̂I(t) (2.23)

+ σ̃I(t)ŜI(t)ŜI(t− τ)ρBB̂I(t− τ)B̂I(t). (2.24)

We take the partial trace, recall ⟨ρÂ⟩ = Tr{ρA} and use cylicity of trace, and also we

multiply by e−iĤst and eiĤst on both sides to get

Ŝe−iĤsτ ŜeiĤsτ σ̃(t)⟨B̂I(t)B̂I(t− τ)⟩ (2.25)

− Ŝσ̃(t)e−iĤsτ ŜeiĤsτ ⟨B̂I(t− τ)B̂I(t)⟩ (2.26)

− e−iĤsτ ŜeiĤsτ σ̃(t)Ŝ⟨B̂I(t)B̂I(t− τ)⟩ (2.27)

+ σ̃(t)e−iĤsτ ŜeiĤsτ Ŝ⟨B̂I(t− τ)B̂I(t)⟩. (2.28)

Organizing these terms as a commutator gives

[Ŝ, e−iĤsτ ŜeiĤsτ σ̃(t)]⟨B̂I(t− τ)B̂I(t)⟩ − [Ŝ, σ̃(t)e−iĤsτ ŜeiĤsτ ]⟨B̂I(t)B̂I(t− τ)⟩, (2.29)

and thus the master equation reduces to

∂ση

∂t
= − i

ℏ
[Ĥs, ση]−

∫ ∞

0

{
[Ŝ, e−iĤsτ ŜeiĤsτσ(t)η]⟨B̂I(t− τ)B̂I(t)⟩
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−[Ŝ, σ(t)ηe−iĤsτ ŜeiĤsτ ]⟨B̂I(t)B̂I(t− τ)⟩
}

dτ. (2.30)

Recall Ĥs can, in general, have complex eigenvalues. Specifically, pseudo-Hermitian matrices
have eigenvalues that are real or come in complex conjugate pairs [52].

Assuming a stationary bath ⟨B̂I(t)B̂I(t − τ)⟩ = ⟨B̂I(τ)B̂I(0)⟩, and since in the energy
basis of Ĥs, [Ĥs, ση]ab = (Ea − Eb)(ση)ab, one recovers a Redfield-type master equation

˙̃σab(t) = −iωabσ̃ab(t)

−
∑
c,d,m

{
Rm

ac,cd(ωdc)σ̃db(t) +Rm,∗
bd,dc(ωcd)σ̃ac(t)

− [Rm
db,ac(ωca) +Rm,∗

ca,bd(ωdb)]σ̃cd(t)
}
. (2.31)

If the Bohr frequencies are entirely real, the Redfield tensor can be evaluated via standard
procedures [47],

Rij,kl(ω) = SijSkl

∫ ∞

0

dτeiωτ ⟨B̂I(τ)B̂I(0)⟩

= SijSkl

∫ ∞

0

dτeiωτ
∑
j

λ2j [e
iωjt⟨n̂(ωj)⟩+ e−iωjt⟨n̂(ωj) + 1⟩], (2.32)

where Sij ≡ ⟨i|Ŝ|j⟩. This expression is obtained by evaluating the bath correlation function,

⟨B̂I(τ)B̂I⟩ =
〈∑

j

λj(b̂
†
je

iωjt + b̂je
−iωjt)

∑
k

λk(b̂
†
k + b̂k)

〉
=

∑
j,k

λjλk[⟨b̂†jeiωjtb̂†k⟩+ ⟨b̂†jeiωjtb̂k⟩+ ⟨b̂je−iωjtb̂†k⟩+ ⟨b̂je−iωjtb̂k⟩]

=
∑
j

λ2j [⟨b̂
†
je

iωjtb̂j⟩+ ⟨b̂je−iωjtb̂†j⟩]

=
∑
j

λ2j [e
iωjt⟨n̂(ωj)⟩+ e−iωjt⟨n̂(ωj) + 1⟩] (2.33)

The third equality is due to (1) the assumption that the bath is composed of uncorrelated
harmonic modes (i.e. operators acting on different modes commute) so the summation is
non-zero only when j = k, and (2) the terms ⟨b̂†jeiωjtb̂†j⟩ and ⟨b̂je−iωjtb̂j⟩ vanish in matrix

form as e.g., b̂je
−iωjtb̂j is non-diagonal. The expectation value of the number operator of

mode j, ⟨n̂(ωj)⟩, is assumed to take the Bosé-Einstein distribution form, nB(ω) ≡ 1
eβω−1

. We
add a vanishing imaginary frequency ω → ω + iϵ and use the Sokhotski–Plemelj theorem,

lim
ϵ→0+

1

x± iϵ
= ∓iπδ(x) + P(

1

x
), (2.34)



CHAPTER 2. PSEUDO-HERMITIAN REDFIELD MASTER EQUATION 9

which yields

Re

{∫ ∞

0

dτeiωτ ⟨B̂I(τ)B̂I(0)⟩
}

=


πJ(ω)n(|ω|) ω < 0

πJ(ω)[(n(ω) + 1] ω > 0.

π limω→0+ J(ω)n(|ω|) ω = 0,

(2.35)

with the spectral density J(ω) =
∑

k λ
2
kδ(ω − ωk). For an ohmic bath with slope γ, it was

shown in e.g., Ref. [55] that limω→0+ J(ω)n(|ω|) = γ
β
. The imaginary part of the Laplace

transform,

Im

{∫ ∞

0

dτeiωτ ⟨B̂I(τ)B̂I(0)⟩
}

≡ Z(ω) =
1

π
P
∫ ∞

−∞
dω′ Γ(ω

′)

ω − ω′ , (2.36)

where P denotes principal value of the integral, will need to be computed explicitly via e.g.,
Matsubara frequency summation [56, 57]. For numerical simulations in the main paper,
this contribution is neglected as it is vanishing at high enough temperatures for Ohmic
spectral densities, as was shown in Ref. [56]. If the Bohr frequencies admit complex values,
ω = ωR + iωI , even in the diagonal basis the Hamiltonian is nonhermitian. In the pseudo-
interaction picture, the creation (annihilation) operator is still b†ke

iωt (b̂ke
−iωt) and

Rij,kl(ωR + iωI) = SijSkl

∫ ∞

0

dτe−ωIτ
∑
j

λ2j [e
i(ωR+ωj)τnB(ωj) + ei(ωR−ωj)τ (nB(ωj) + 1)].

(2.37)

The integral converges always when ωI > 0, in which case∫ ∞

0

λ2jnB(ωj)e
−ωIτei(ωR+ωj)τdτ =

λ2jnB(ωj)

ωI + i(ωR + ωj)
, (2.38)

and ∫ ∞

0

λ2j(nB(ωj) + 1)e−ωIτei(ωR−ωj)τdτ =
λ2j(nB(ωj) + 1)

ωI + i(ωR − ωj)
, (2.39)

which will have no poles unless ωj is complex. Therefore, here we introduce a hand-wavy
workaround which is essentially a quick fix ansatz. More physical justification will be dele-
gated to a future work.

We let the bath modes possess finite imaginary frequencies, ωJ = ωJ,R + iωJ,I , and
assuming JG(ωR, ωI) = JR(ωR)JI(ωI) =

∑
j λ

2
j,Rδ(ωR−ωj,R)

∑
k λ

2
k,Iδ(ωI−ωk,I), this recovers

Eq. (2.35) only that J(ω) → JG(ωR, ωI). If ωI < 0, a different regularization procedure is
needed to evaluate the Laplace transform, following [58], through introducing a small real
parameter x,

G(ω, ϵ) =

∫ ∞

0

dxe−ϵx2

eiωx =
i

ω

√
πwew

2

erfc(w) (2.40)
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where w = −iω/(2
√
ϵ). G(ω, ϵ → 0+) converges to i

ω
provided −π

4
< argω < 5

4
π, and this

is assumed in this thesis. Otherwise, the integral converges given sufficiently behaving λI ,
which is assured given appropriate imaginary spectral density (e.g., decaying sufficiently fast
in both real and imaginary parts). Recollecting our results,

Re

{∫ ∞

0

dτei(ωR+iωI)τ ⟨B̂I(τ)B̂I(0)⟩
}

=


πJG(ωR, ωI)n(|ωR|) ωR < 0

πJG(ωR, ωI)[(n(ωR) + 1] ωR > 0.

π limω→0+ J(ω)n(|ω|) ωR = 0,

(2.41)

and we still demand the Bosé-Einstein distribution function to be insensitive to ωI . Essen-
tially, the form of JG(ωR, ωI) is a degree of freedom of the environment. To follow we take

JG(ωR, ωI) = J(ωR), although a damped spectral density JG(ωR, ωI) = J(ωR)e
−ζωIe

− ωI
ωc,I

can also be chosen.
It is natural to think about the extension proposed here on bath frequencies having finite

imaginary components in terms of classical driven or damped harmonic oscillators. Namely,
the bosonic thermal bath has now been generalized to contain driven and damped, on top of
simple harmonic oscillators. Indeed, a few studies have reported the emergent need for this
generalization especially when considering dissipative and open quantum systems [59, 60].
However, it is not trivial to quantize damped and driven classical oscillators, then consider
a thermodynamic quantity of them, and finally proceeding in analogous fashion to retrieve
the so-called generalized spectral density more rigorously. This problem is still yet unsolved
and the literature on it is still very much an active area of research [61, 62].

In sum, the key step of deriving PHRE is the identification of a proper interaction picture
if we evolve a pseudo density matrix ρη, Eq. (2.10). This allows writing the master equation
Eq. (2.30) which takes the familiar Redfield form, but (1) the system Hamiltonian ĤS can
in principle admit complex eigenvalues, and (2) the differential equation involves a pseudo
density matrix σ̃ ≡ ση. The pseudo density matrix, even though evolved as if it is a proper
density matrix, is not required to satisfy basic properties: normalization, positivity, and
purity conditions. The operation of the metric η could be thought of as a weak projector,
so that when we rotate back to σ, a normalization procedure is taken,

σ(t) =
σ̃(t)η−1

Tr{σ̃(t)η−1}
. (2.42)

Numerically, this procedure is done each timestep. However, one can add a nonlinear coun-
terterm to ensure trace normalization [63].

Since the system Hamiltonian ĤS may admit complex eigenvalues, when evaluating the
Laplace transform of the bath correlation function,∫ ∞

0

dτe−ωIτ
∑
j

λ2j [ ei(ωR+ωj)τnB(ωj)

+ei(ωR−ωj)τ (nB(ωj) + 1)], (2.43)



CHAPTER 2. PSEUDO-HERMITIAN REDFIELD MASTER EQUATION 11

we find a new term e−ωIτ probing a new dimension of the bath. Namely, assuming the
transform converges, one finds that the spectral density of the bath must be generalized to
include imaginary frequencies.

Throughout our analysis (except at the EP), left (⟨Li|) and right (|Ri⟩) eigenvectors,
satisfying

⟨Li|Ĥ = Ei⟨Li|, Ĥ|Ri⟩ = Ei|Ri⟩ (2.44)

are biorthonormalized to satisfy relations in Refs. [64, 65]. Namely,

⟨Li|Rj⟩ = ⟨R∗
i |Rj⟩ ≡ δij, (2.45)

while in general ⟨Ri|Rj⟩ ≠ δij.
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Chapter 3

Applications A: Triangular
Hamiltonian

We employ the formalism described in Ch. 2 to investigate a triangular Hamiltonian [66]
Eq. (3.1), realized classically through nonreciprocal or unidirectional coupling between two
energy levels, see e.g., Refs. [67, 68]. This Hamiltonian does not have decay terms yet
it is still pseudo-hermitian, and therefore it is an example of a nonhermitian system that
cannot result from an effective Lindblad description through neglecting quantum jumps.
This triangular Hamiltonian system (THS),

Ĥ∆
S =

[
α γ
0 β

]
= V

[
α 0
0 β

]
V −1, α, β, γ,∈ R (3.1)

satisfies Eq. (2.1), where V is composed of eigenvectors

[
1
0

]
,

[
− γ

α−β

1

]
, and

η =

[
a γ

α−β
a

γ
α−β

a d

]
, (3.2)

for some arbitrary numbers a and d. THS clearly has real eigenvalues. This is a good model to
compare with nondissipative dynamics (i.e., |ψ(t)⟩ = e−iĤ∆

S t|ψ(0)⟩), which is simple enough
to solve exactly. For instance, if we prepare the initial state ρ(0) = x|g⟩⟨g| + (1 − x)|e⟩⟨e|,
then at later times

ρ(t) = e−iĤ∆
S tρ(0)ei(Ĥ

∆
S )†t

=

[
2(1−x)γ2(cos (α−β)t−1)

(α−β)2
+ x (1−ei(b−a)t)(x−1)γ

α−β
(1−e−i(b−a)t)(x−1)γ

α−β
1− x

]
. (3.3)

The evolution of the density matrix is already not trace-preserving for nondissipative dy-

namics, i.e., Tr{ρ(t)} = 1 + 2(1−x)γ2(cos (α−β)t−1)
(α−β)2

as long as γ ̸= 0. However, the density



CHAPTER 3. APPLICATIONS A: TRIANGULAR HAMILTONIAN 13

matrix is still hermitian, with the coherences related by complex conjugates of each other.
We now discuss opening this system to a thermal environment via Ŝ = σ̂x with the formalism
described in Ch. 2. Simulation results are presented in Fig. (3.1), with a few important
observations highlighted as follows: (1) One expects that the thermal state of the THS to
mimic the case when g = 0, since its eigenvalues are dictated only by the diagonals, α and
β. This is observed for the populations (after normalization) shown in panel (a). However,
the THS develops coherences that become nonvanishing at steady-state, as seen in panel (b).
This is characteristic of a Hamiltonian of the type ∆

2
σz + γσx, and thus the thermally open

THS behaves in between these two limits. (2) The coherences of the THS can at transient
times not be complex conjugates of each other, and therefore in this sense the density matrix
becomes nonhermitian. However, this is hardly surprising as the system unitary dynamics
is dictated by a nonhermitian hamiltonian.

Figure 3.1: Simulations results using PHRE and standard Redfield. In panel (a), we plot
the populations of Ĥ∆

S , Eq. (3.1) using PHRE and ĤT
S ≡ a|g⟩⟨g|+ b|e⟩⟨e| using Redfield. In

panel (b) we plot the real part of the coherences of Ĥ∆
S , Eq. (3.1) using PHRE, and ĤT

S and
ĤR

S ≡ a|g⟩⟨g| + b|e⟩⟨e| + γ|g⟩⟨e| + h.c., using Redfield. Parameters used are a = 1, b = 2,
γ = 0.5, T = 4, and the bath spectral density is a Ohmic with slope 0.005 with an infinite
energy cutoff.
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Chapter 4

Applications B: Two level gain-loss
PT -symmetric Hamiltonian

One of the most archetypal model in the nonhermitian physics literature is the PT -symmetric
gain-loss Hamiltonian [69], Eq. (4.1),

ĤS =

[
a− ib g
g a+ ib

]
. (4.1)

This system has been studied experimentally in various classical and quantum platforms, e.g.
Ref. [18, 70, 71, 72, 73, 74], as it is a minimal model which displays robust nonhermitian
properties. Yet even theoretically, studies (e.g., Refs. [36, 50]) investigating this model
treated it without opening to a structured thermal environment through a phenomenological
Lindblad description. Therefore they miss insight on the effects of microscopic properties
e.g., having a phononic bath at a specific temperature or structure, to the robustness of
exceptional points and deformation of the eigenspectrum. With eigenvalues λ1,2 = a ∓√
g2 − b2 and eigenvectors [− ib±

√
g2−b2

g
, 1]T , the Hamiltonian Eq. (4.1) has an exceptional

point at g = b. When g > b the eigenvalues are real and the system is in the so-called
PT -unbroken phase. When g < b, the eigenvalues are purely imaginary, and the system is
in the PT -broken phase.

Dynamics

PHRE has no problem simulating this model with metric η = σ̂x, but we first discuss
dynamics of the system without coupling to a thermal bath as follows: the opposing limits
of Eq. (4.1) are (1) when b = 0 where the system undergoes a Rabi-type oscillatory dynamics,
which is well understood, and (2) when g = 0, where the model becomes a pure gain-loss
Hamiltonian. With the initial state ρ(0) = x|g⟩⟨g|+(1−x)|e⟩⟨e|, the dynamics of the latter
limit g = 0 satisfies

ρ(t) =

[
e−2btx 0

0 (1− x)e2bt

]
. (4.2)
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This analysis shows transparently the impacts of the non-hermitian terms ±ib: the ground
state decays to zero, while the excited state gains population indefinitely. The trace as a
function of time is given by Tr{ρ(t)} = cosh 2bt + (1 − 2x) sinh 2bt, which is not unity in
general.

In between these two limits, the impact of a nonvanishing g is to connect these two levels–
one channel decay and another gain. This model is still simple enough to solve analytically,

⟨1|ρ(t)|1⟩ =
2bx

√
g2 − b2 sin

(
2t
√
g2 − b2

)
+
(
2b2x+ g2(1− 2x)

)
cos

(
2t
√
g2 − b2

)
− g2

2(b2 − g2)
, (4.3)

⟨2|ρ(t)|2⟩ =
g2x sin2

(
t
√

g2 − b2
)
− (x− 1)

(
b sin

(
t
√
g2 − b2

)
+
√
g2 − b2 cos

(
t
√
g2 − b2

))2

g2 − b2
,

(4.4)

⟨1|ρ(t)|2⟩ = (⟨2|ρ(t)|1⟩)∗ =
ig

(
(2x− 1)

√
g2 − b2 sin

(
2t
√
g2 − b2

)
+ b cos

(
2t
√
g2 − b2

)
− b

)
2 (g2 − b2)

.

(4.5)

We now open this quantum system to a thermal environment via a σ̂x−type interaction,
simulated with PHRE (panels (a) and (b)) and Generalized Local Lindblad Equation [40]
(GLE, panels (c) and (d), for details on this method see Appendix A) in Fig. (4.1). Note
that for comparison, the rates in GLE were obtained via microscopic arguments used in
PHRE. There are two regions of interest, shown in each panel pairs. Since both methods
agree quantitatively in these two regimes, henceforth we discuss only the PHRE results. In
panel (a) we simulate the PT −symmetry broken phase. Here, the oscillatory behaviour
driven by g is minimal and the system approaches equilibrium as dictated by an interplay
of thermal and nonhermitian channels. However, as we defined the complex spectral density
as JG(ωR, ωI) = J(ωR) (the imaginary part set constant) and since the Bosé-Einstein dis-
tribution only depends on ωR, here the thermally-driven rate of excitation precisely equals
the relaxation rate. In this case, thermal effects simply couple the two levels the same way
g does without affecting steady-state populations. In panel (b), we consider the opposite
limit, when g ≫ b and the system is in the unbroken phase. The dynamics in this regime is
markedly different, with oscillatory behaviour taking over. Without the b term, the steady
state would be an equal population of ground and excited states, yet here there is a finite
population difference due to nonhermitian gain-loss asymmetry. Note, the fact that the
system goes to a steady state at all in this regime is due to thermal effects.

Close to the Hamiltonian exceptional point g = b both methods PHRE and GLE predict
similar dynamics, as we discuss further in Appendix A. There is nothing special about the
dynamics close to the Hamiltonian exceptional point for this model.
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Figure 4.1: Simulations of density matrix evolution of the PT -symmetric gain-loss Hamil-
tonian in Eq. (4.1) in different regimes: the broken phase, g = 0.2 < b, with PHRE (a) and
GLE (c) and the unbroken phase , g = 3 > b, with PHRE (b) and GLE (d).Other parameters
are a = 0, b = 2, T = 4, J(ω) = 0.005ω.

Exceptional Points

Hamiltonian (Liouvillian) dynamics is governed by e−iĤt|ψ(t0)⟩ (eLt|ψ(t0)⟩ so the elements
of the system density matrix is given by

∑
i cie

λL,it where ci depends on initial conditions)
and therefore the eigenvalues of the Hamiltonian (Liouvillian) dictate the dynamics and
(sometimes) the steady-state of the system, representing available dynamical modes. Non-
hermitian systems, through a tunable parameter, can display characteristic modification of
these modes (oscillatory or decaying, as observed prior) as signified by nondiagonalizabilities
in parameter space called exceptional points. Exceptional points have become a hallmark of
nonhermitian physics, with numerous nontrivial effects associated on their proximity. Cru-
cially, temperature is an easily accessible parameter that has not been utilized to deform
the eigenspectrum of the Liouvillian, in turn directing the position of exceptional points.
This is because existing studies have without exception used the GKLS formalism, where
temperature is not a microscopically tunable parameter.

In this work, we study the effects of temperature to the eigenspectrum of the pseudo-



CHAPTER 4. APPLICATIONS B: TWO LEVEL GAIN-LOSS PT -SYMMETRIC
HAMILTONIAN 17

density matrix Liouvillian (note that its eigenvalues are the same to the Liouvillian of the
actual density matrix, see the next section). In Fig. (4.2), we plot the eigenvalues of
the Hamiltonian Eq. (4.1) (circle marks) and the corresponding Liouvillian (no marks) as
functions of the driving parameter g. Analytical details are presented in the next section. The
third order HEP becomes a second order LEP once the system is open to the environment.
It is also shifted from the original position, similar to the observations in Refs. [23, 28].

In the PHRE formalism, the eigenvalues of the Liouvillian is obtained through an effective
description of the system in the energy basis, where the system Hamiltonian becomes entirely
real (in the unbroken phase) or with complex conjugate eigenvalue pairs (in the broken
phase). The nonhermiticity is delegated to the system interaction operator Ŝ which becomes
nonhermitian in the energy basis. It was pointed out in Refs. [75, 76] in the context of
photonic devices that complex couplings may lead to the displacements of EPs in parameter
space, in agreement to our observation here.

In addition to temperature, with the PHRE formalism the rates themselves bifurcate as
a function of g. Further, the imaginary part of the generalized spectral density may also
be engineered to deform the eigenspectrum of the Liouvillian, as we discuss further in the
section after next.

Additional details on analyzing the Liouvillian

We defined the Liouvillian operating on the vectorized pseudo-density matrix. This is ex-
plicitly

[
σ11 σ12
σ21 σ22

] [
η11 η12
η21 η22

]
=

[
σ11η11 + σ12η21 σ11η12 + σ12η22
σ21η11 + σ22η21 σ21η12 + σ22η22

]
→


σ11η11 + σ12η21
σ11η12 + σ12η22
σ21η11 + σ22η21
σ21η12 + σ22η22

 (4.6)

what we would like is a Liouvillian operating on
[
σ11 σ12 σ21 σ22

]T
and so we find M so that

σ11η11 + σ12η21
σ11η12 + σ12η22
σ21η11 + σ22η21
σ21η12 + σ22η22

 =M


σ11
σ12
σ21
σ22

 , ⇒M =


η11 η21 0 0
η12 η22 0 0
0 0 η11 η21
0 0 η12 η22

 (4.7)

and therefore

˙⃗
ṽ = M ˙⃗v = L̃M⃗̃v

⇒ ˙⃗v =M−1L̃M︸ ︷︷ ︸
L

v⃗, (4.8)

so the pseudo-Liouvillian is the similarity transform of the Liouvillian. Therefore they have
the same set of eigenvalues. Similarly, a density matrix is rotated from/to the site basis via
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Figure 4.2: The eigenspectrum of the Hamiltonian and Liouvillian of the PT -symmetric
gain-loss Hamiltonian Eq. (4.1) open to a thermal environment via Ŝ = σ̂x. In panel (a1)
and (b1) we plot the imaginary part of the eigenvalues and in (a2) and (b2) the real parts.
For panels (a1) and (a2), T = 4 and for (b1) and (b2), T = 40. Other parameters are:
a = 1, b = 2, J(ω) = 0.005ω

a unitary transformation

σD = UσLU † ⇒ ∃U , s.t., v⃗D = U v⃗L. (4.9)

Thus the eigenvalues of the pseudo-Liouvillian are the same with the Liouvillian in any basis.
In the main thesis, we analyzed the eigenspectrum of the pseudo-Liouvillian.

In particular for the system Eq. (4.1) we analyze the Liouvillian as follows. The pseudo
density matrix, vectorized as v⃗ = [σ̃11 σ̃21 σ̃12 σ̃22]

T , follows

˙⃗v(t) = Lv⃗(t), (4.10)

where

L(1, 1) = −SD
12S

D
21k1→2, L(1, 2) = γ(SD

11S
D
21 − SD

12S
D
22)

2β
,

L(1, 3) =
γ(SD

11S
D
21 − SD

12S
D
22)

2β
, L(1, 4) = 1

2
(k1→2(S

D
21)

2 + k2→1(S
D
12)

2)
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L(2, 1) =
(SD

11 − SD
22)S

D
21k1→2

2
+

(SD
12 − SD

21)S
D
11γ

2β
,

L(2, 2) =
γSD

11S
D
22 − (SD

22)
2/2− (SD

11)
2/2

β
− SD

12S
D
21

2
(k1→2 + k2→1) + 8i

√
γ2 − b2,

L(2, 3) =
1

2
(k1→2(S

D
21)

2 + k2→1(S
D
12)

2),

L(2, 4) =
(SD

22 − SD
11)S

D
12k2→1

2
+

(SD
21 − SD

12)S
D
22γ

2β
,

L(3, 1) =
(SD

11 − SD
22)S

D
21k1→2

2
+

(SD
12 − SD

21)S
D
11γ

2β
, L(3, 2) = 1

2
(k1→2(S

D
21)

2 + k2→1(S
D
12)

2),

L(3, 3) =
γSD

11S
D
22 − (SD

22)
2/2− (SD

11)
2/2

β
− SD

12S
D
21

2
(k1→2 + k2→1)− 8i

√
γ2 − b2,

L(3, 4) =
(SD

22 − SD
11)S

D
12k2→1

2
+

(SD
21 − SD

12)S
D
22γ

2β
, L(4, 1) = SD

12S
D
21k1→2,

L(4, 2) = −γ(S
D
11S

D
21 − SD

12S
D
22)

2β
, L(4, 3) = −γ(S

D
11S

D
21 − SD

12S
D
22)

2β
, L(4, 4) = −SD

12S
D
21k2→1.

(4.11)

with SD = V σxV
−1 where the columns of the matrix V are composed of the eigenvectors of

the system Hamiltonian Eq. (4.1). This Liouvillian is constructed out of the Redfield tensor.

Additional simulations

Here we present calculations which are interesting but due to time constraints discussions
warranted are delegated to a future work.

Varying the imaginary frequency spectral density

Here we adopt a damped complex spectral density, JG(ωR, ωI) = J(ωR)e
−ζωI with ζ = 1. It

is observed in Fig. (4.3) that the eigenspectrum of the Liouvillian analogous to that in Fig.
(4.2) is deformed nontrivially.

Varying the system-bath coupling parameter

Here we show in Fig. (4.4) that the system bath coupling parameter (and equivalently e.g.,
the slope of the Ohmic spectral density) acts similarly to temperature in shifting the LEP.
However, temperature is still a much more accessible parameter to tune experimentally.
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Figure 4.3: Liouvillian eigenspectrum of the PT -symmetric gain-loss Hamiltonian Eq. (4.1)
calculated using PHRE, with a modified generalized spectral density. Parameters: a = 0, b =
2, T = 4, JG(ωR, ωI) = 0.005ωRe

−ωI .

Figure 4.4: Liouvillian eigenspectrum of the PT -symmetric gain-loss Hamiltonian Eq. (4.1)
calculated using PHRE, with a modified Ohmic spectral density slope. Parameters: a =
0, b = 2, T = 4, JG(ωR, ωI) = 0.05ωR.

Superohmic baths

In most cases, bosonic baths can be described by power-law spectral densities of the form
[77],

J(ω) = γ
ωs

ωs−1
ph

e−ω/ωc , (4.12)

with cutoff frequency ωc and phononic frequency ωph. In the main text, we set s = 1 so
that the bath is ohmic, although it is also perfectly reasonable to have subohmic (s < 1)
or superohmic (s > 1) baths. Interestingly, for superohmic baths, the usual term respon-
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sible for dephasing in Eq. (2.35), π limω→0+ J(ω)n(|ω|), vanishes. In Fig. 4.5 we plot the
eigenspectrum of a superohmic bath, setting ωph = ωc, and observe that it matches the
Hamiltonian eigenspectrum without LEPs being displaced. This highlights the importance
of a nonvanishing dephasing term.

Figure 4.5: Liouvillian eigenspectrum of the PT -symmetric gain-loss Hamiltonian Eq. (4.1)
calculated using PHRE, with a superohmic spectral density (and the imaginary part set to
1). Parameters: a = 0, b = 2, T = 4, JG(ωR, ωI) =

γ
ωc
ω2
R, γ = 0.005, ωc = 10000.
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Chapter 5

Applications C: Three-level gain-loss
PT -symmetric Hamiltonian

Here we consider a three-level quantum system: two degenerate excited states experienc-
ing either gain or loss, thermally and symmetrically coupled to a common ground state.
Compared to the two level PT -symmetric Hamiltonian, here thermal effects are less inter-
laced from nonhermitian effects and in principle manifestations of nonsecular effects can be
observed far from the exceptional point. The Hamiltonian of this model reads

ĤS =

ϵ1 0 0
0 a− ib g
0 g a+ ib

 , Ŝ =

0 1 1
1 0 0
1 0 0

 (5.1)

with metric

η =

1 0 0
0 0 1
0 1 0

 , (5.2)

where ϵ1 < a. This and related models have been observed to exhibit a number of interesting
effects, e.g., PT -symmetric Talbot effect [78]. In the context of this work, the dynamics of
this model is expected to exhibit the interplay of (1) thermal effects since relaxation and
excitation rates from (to) the ground state (excited state) are different and related by detailed
balance, (2) nonhermitian effects (gain and loss of the excited states), and (3) nonsecular
behaviour.

In Figure (5.1) we plot the open system dynamics using PHRE (ϵ1 = 0 < a = 1, b = 2),
prepared in the maximally entangled state σ(0) = 1/3 (not an eigenstate). In panel (a) we
set g = 0.2 < b, so the system is in the broken phase. Here, steady state solutions depend on
the initial state, characteristic of degenerate V−models with symmetric couplings [79]. This
is emulated in our pseudo-hermitian V−model in the broken phase, since the generalized
spectral density was chosen to be insensitive to imaginary Bohr frequencies. We present
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an analytical analysis in the next section for the case when a = g = 0. It shows that as
expected, for large enough b the third level continuously gains populations while the second
level decays to zero. Since here the second and third levels are coupled only indirectly
(through the ground state), at long times essentially only the third level is populated. Note,
the relative populations of the ground compared to the excited levels can be adjusted by
tuning the bias of the relaxation and excitation rates, either through changing temperature or
the ground-excited splitting energy a (see Additional Simulations). In panel (b), the system
is in the unbroken phase as signified by pronounced transient oscillations. Notably, excited
states relax to approximately equal populations. This because the larger coupling term g
constantly interchanges the populations of the excited states, overpowering the asymmetry
induced by spontaneous gain or loss through the b term. Both nonhermitian decay and
thermal relaxation contribute to damping oscillatory dynamics.

Finally, in panel (c) we show the dynamics close to the (Hamiltonian) exceptional point
g ≈ b, meaning interlevel coupling somewhat balances out spontaneous gain and loss. There-
fore the excited states still relax to distinguishable steady states, but with little to no os-
cillation. The fact that the steady state population of the ground state is lesser than the
excited states is due to the splitting a which is considered small here. In Additional Sim-
ulations we show that (1) the parameters a, b, g can be each tuned to obtain a particular
steady state, and (2) that this model can display prethermalization behaviour [80] as b→ 0.
Notably, the novel observation is that the quasi-degeneracy of the V -model, which breaks
the integrability of the degenerate V -model and induces prethermalization, is here replaced
by a small gain-loss parameter b.

In Fig. (5.2) we show the eigenspectrum of the three-level system. This shares some
similarities with the two-level analog shown in Fig. (4.2) although crucially, here the open-
ing the system to a thermal environment results to the subjugation of exceptional points.
The transition from the broken to unbroken phase or vice-versa, that is as eigenmodes co-
alesce, occurs smoothly and very gradually. This was similarly observed in e.g., Ref. [81].
Furthermore, here we observe an avoided crossing past the HEP.

Analytical results when g = 0

Here, the system is already diagonal so we can write the equations of motion (from PHRE) of
the pseudo-density matrix as (assuming the state is prepared without imaginary coherences)

˙̃σ11(t) = −(k1→2 + k1→3)σ̃11(t) + k2→1σ̃22(t) + k3→1σ̃33(t)

+
(k2→1 + k3→1)

2
(σ̃23(t) + σ̃32(t)), (5.3)

˙̃σ22(t) = (k1→2)σ̃11(t)− k2→1σ̃22(t)−
k2→1

2
(σ̃23(t) + σ̃32(t)), (5.4)

˙̃σ33(t) = (k1→3)σ̃11(t)− k3→1σ̃33(t)−
k3→1

2
(σ̃23(t) + σ̃32(t)), (5.5)

˙̃σ32(t) = 2bσ̃32(t)−
1

2
(k2→1 + k3→1)σ̃32(t)
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Figure 5.1: Dynamical evolution of the density matrix of the dissipative three-level V-model
Hamiltonian using PHRE prepared in the maximally entangled state σ(0) = 1

3
1. We vary

the driving parameter g across panels, (a) g = 0.2 (broken phase), (b) g = 3 (unbroken
phase), and (c) g = 2.01 (close to the exceptional point). Other parameters are ϵ1 = 0, a =
1, b = 2, T = 4, J(ω) = 0.005ω.

Figure 5.2: The eigenspectrum of the Liouvillian open to a thermal environment Eq. (5.1).
In panel (a) we plot the imaginary part of the eigenvalues and in (b) the real parts. The arrow
indicate an avoided crossing. Other parameters are: a = 0, b = 2, T = 4, J(ω) = 0.005ω

−1

2
k2→1σ̃22(t)−

1

2
k3→1σ̃33(t) +

1

2
(k1→2 + k1→3)σ̃11(t), (5.6)

˙̃σ23(t) = −2bσ̃23(t)−
1

2
(k2→1 + k3→1)σ̃23(t)
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−1

2
k2→1σ̃22(t)−

1

2
k3→1σ̃33(t) +

1

2
(k1→2 + k1→3)σ̃11(t). (5.7)

Assuming that the generalized spectral density does not depend on the imaginary part of
the Bohr frequencies, k3→1 = k2→1 ≡ k↓ so

˙̃σ11(t) = −2k↑σ̃11(t) + 2k↓ (σ̃22(t) + σ̃33(t))︸ ︷︷ ︸
P̃e(t)

+k↓(σ̃23(t) + σ̃32(t)) (5.8)

˙̃Pe(t) = 2k↑σ̃11(t)− 2k↓P̃e(t)− k↓(σ̃23(t) + σ̃32(t)) (5.9)
˙̃σ32(t) = 2bσ̃32(t)− k↓σ̃32(t)− k↓P̃e(t) + k↑σ̃11(t) (5.10)
˙̃σ23(t) = −2bσ̃23(t)− k↓σ̃23(t)− k↓P̃e(t) + k↑σ̃11(t) (5.11)

and thus

d

dt
˜⃗v(t) =


−2k↑ 2k↓ k↓ k↓
2k↑ −2k↓ −k↓ −k↓
k↑ −k↓ 2b− k↓ 0
k↑ −k↓ 0 −2b− k↓


︸ ︷︷ ︸

M

˜⃗v(t) (5.12)

where ˜⃗v ≡ [σ̃11(t) P̃e(t) σ̃32(t) σ̃23(t)]
T . The coefficient matrix in Eq. (5.12) is singular, and

the dynamics it dictates has infinitely many steady-state solutions. We can still conclude a
few important observations here. First, note that to revert to the (actual) density matrix
we multiply the pseudo density matrix by the inverse of the metric η. Here this simply
rearranges its elements, namely σ̃23 → σ22 and σ̃32 → σ33. Thus, looking at the equations of
motion, when 2b > k↓ the third level continuously gains population. On the other hand the
second level (with the loss term) steadily decays.

This is expected, but this analysis makes clear that the PHRE models decaying dynamics
through using the additional degree of freedom of the coherences (can be negative and no
trace constraints).

Additional simulations

Long-lived nonhermitian dynamics

A quasi-degenerate three level model [56, 80] has been known to exhibit prethermalization
behaviour, with dynamics lifetime scaling square-inversely proportional to the quasidegen-
erate splitting energy [82, 83]. Here we show that a degenerate nonhermitian system can
also display prethermalization behaviour, with the breaking of integrability delegated to the
small but nonvanishing gain-loss parameter.
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Figure 5.3: (No thermal bias) Dynamical evolution of the density matrix of the dissipative
three-level V-model Hamiltonian using PHRE prepared in the maximally entangled state
σ(0) = 1

3
1. We vary the gain-loss parameter b across panels, (a) b = 0.5, (b) b = 0.1, (c)

b = 0.01, and (d) b = 0.001. Other parameters are ϵ1 = 0, b = 2, g = 1, T = 4, J(ω) = 0.005ω.

Figure 5.4: (High thermal bias) Dynamical evolution of the density matrix of the dissipative
three-level V-model Hamiltonian using PHRE prepared in the maximally entangled state
σ(0) = 1

3
1. We vary the gain-loss parameter b across panels, (a) b = 0.5, (b) b = 0.01, (c)

b = 0.001, and (d) b = 0.0001. Other parameters are ϵ1 = 0, a = 5, g = 1, T = 4, J(ω) =
0.005ω.

Where does the pseudohermitian system relax to?

In this section the particular Hamiltonian we discuss is the three level gain-loss PT -symmetric
Hamiltonian Eq. (5.1). This choice is due to the robustness of the model, with each param-
eters a, b, g, and T tunable to highlight thermal, nonhermitian decay, and interlevel coupling
effects.

It must first be noted that while we would expect the system to relax to a thermal Gibbs

state (σGibbs = e−βĤs

Tr{e−βĤs}) for b = 0, this is not always true. Indeed, when b = 0 with the

Hamiltonian Eq. (5.1), the system is integrable and therefore it suffers from having infinitely
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many steady-state solutions depending on the initial state. While the integrability can be
broken by introducing a small splitting between the excited states, this would cause the
Hamiltonian to violate the pseudohermiticity condition Ĥ† = ηĤη−1. Instead, we make use
of our recent finding that a small b can be used to break integrability, causing the system to
relax to the ”true” steady state with characteristic lifetime proportional to b−2. Essentially,
the system will approach (but never fully reach) the Gibbs state in the limit of small but
nonzero b, specifically 0 < b ≪ a, g, β. We plot this analysis in Fig. (5.5). Note that for
b < g such that the system is in the broken phase, the Gibbs state is itself ill defined due to
complex eigenenergies.

Figure 5.5: Dynamical evolution of the density matrix of the dissipative three-level V-model
Hamiltonian using PHRE prepared in the maximally entangled state σ(0) = 1

3
1. We vary

the gain-loss parameter b across panels, (a) b = 0, (b) b = 0.001, (c) b = 0.1, (d) b = 2, and
(e) b = 2.99. Other parameters are ϵ1 = 0, a = 3, g = 3, T = 1, J(ω) = 0.005ω.

Dynamical impacts of varying temperature

Here we show briefly the impacts of changing temperature on the dynamics of pseudohermi-
tian systems specifically for the three level gain-loss PT -symmetric Hamiltonian Eq. (5.1).
Primarily, temperature controls the relative populations of the ground and excited states.
This is summarized in Fig. (5.6).

Analysis in the eigenbasis

Here we briefly discuss dynamics of the three level gain-loss PT -symmetric Hamiltonian Eq.
(5.1) in its eigenbasis. It must be noted that although in the unbroken regime eigenenergies
are real, even for unitary dynamics (i.e., no coupling to a thermal bath) one cannot
expect physical density matrices in both the energy and local basis simultaneously. This is
because the basis change matrix is complex, therefore if we demand the local basis density
matrix e.g., to have strictly real diagonal elements, generally in the energy basis they will be
complex (i.e., with nonzero imaginary populations). Note that in some parameter regimes
one may even get negative eigenbasis populations. Regardless, we plot in Fig. 5.7 the
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Figure 5.6: Dynamical evolution of the density matrix of the dissipative three-level V-model
Hamiltonian using PHRE prepared in the maximally entangled state σ(0) = 1

3
1. We vary

the temperature T across panels, (a) T = 0.2, (b) T = 2.5, and (e) T = 4. Other parameters
are ϵ1 = 0, a = 1, g = 3, b = 2, J(ω) = 0.005ω.

dynamics of the density matrix elements in the energy basis for two differing regimes. We
show that as b increases (1) the steady state density matrix further deviates from the Gibbs
state, and (2) accumulates more transient imaginary populations. One would expect for this
model that the coherences decay to zero, but interestingly this is also only observed for small
b.

Figure 5.7: Dynamical evolution of the density matrix (in the energy basis) of the dissipative
three-level V-model Hamiltonian using PHRE prepared in the maximally entangled state
σ(0) = 1

3
1. We vary b across panels, (a) b = 0.01, and (b) b = 2. Insets show imaginary

populations. Other parameters are ϵ1 = 0, a = 1, g = 3, T = 1, J(ω) = 0.005ω.
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Chapter 6

Discussion and Outlook

We have developed a nonsecular master equation framework to model pseudo-hermitian
Hamiltonians open to a thermal environment. This approach makes use of the pseudo-
density matrix ρ̃(t) = ρ(t)η where Ĥ† = ηĤη−1, which allows performing the usual Born-
Markov perturbation scheme. The resulting equation takes the Redfield form, and therefore
existing tools which expands on the Redfield equation are applicable. These include Polaron
transformations [84, 85, 86], the reaction-coordinate mapping [87, 88], and a number of
refined Redfield methods [89]. The tactic through which PHRE simulates dynamics with
spontaneous gain/loss is by mapping populations to coherences and vice versa, via σ ↔ ση,
since bare Born-Markov Redfield cannot model spontaneous decay. Through this, population
dynamics gain a additional degrees of freedom as coherences are not constrained by positivity
and trace conditions (see analytical analysis in Ch. 4).

Our approach differs from the usual methods to study LEPs in the literature as we
treat the nonhermiticity of the system Hamiltonian fully microscopically. This yields two
fundamental insights: (1) both temperature and the coupling parameter (or e.g., the slope
of the Ohmic spectral density function) can be tuned to deform the eigenspectrum, in turn
displacing the position of exceptional points in parameter space. Temperature is typically
easier to control than the coupling parameter. (2) In the broken regime, the spectral density
of the bath needs to be generalized to solve the relevant Laplace transform. Here, we
introduced a simple fix via complex delta functions but a more systematic derivation is
to follow as a future study. Regardless, the imaginary part of the generalized spectral
density is an unprobed degree of freedom that can have interesting implications both on
dynamics and on the eigenspectrum. In addition, even the real part of the spectral density
may have nontrivial effects to the eigenspectrum of the Liouvillian: while here we used
an Ohmic spectral density, where limω→0+ J(ω)n(|ω|) ̸= 0, this relationship is not general.
When this quantity vanishes (corresponding to superohmic baths), PHRE does not predict
displacements of exceptional points. Throughout this study, nontrivial nonsecular effects
did not emerge far or close to the EPs. Finally, we mention the last piece of approximation
made for the numerics in this work, that is to set the imaginary part of the bath correlation
function Laplace transform to zero. It was argued in Ref. [56] that this quantity is far
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smaller than the real part for Ohmic baths and further that they contribute only to Lamb
shift, justifying our choice here. However, mixed terms (e.g., imaginary part of the bath
correlation function Laplace transform with the imaginary part of the coupling matrix in
the eigenbasis and vice versa) may admittedly lead to nontrivial behaviour. More detailed
investigation is left for a future study.

While here we focused on pseudo-hermitian quantum systems, analogous derivation may
be undertaken to generalize the results to all nonhermitian quantum systems. We sketch the
approach in the appendix. Regardless, pseudo-hermitian hamiltonians already encompass
a wide variety of quantum systems open to a thermal environment. Interesting topics for
following studies include the impacts of nonequilibrium effects, exploiting proximities to ex-
ceptional points for dynamical acceleration [90, 80], and further investigating the positivity
and nonlinearity of the PHRE. Future plans are focused on analytically solving nonhermitian
dynamics with methods described in e.g., Ref. [80]. This work paves the way for experimen-
tal studies of pseudo-hermitian quantum systems with temperature as a tunable parameter,
with potential applications in quantum sensing, quantum information sciences, and quantum
control. Further, this work opens up the possibility of studying pseudohermitian Hamilto-
nians, an often overlooked class of systems, interacting with a thermal environment where
microscopic details are important.
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Appendix A

Pseudo-hermitian master equations in
the Lindblad form

A completely positive trace preserving (CPTP) density matrix to density matrix map takes
the Lindblad form (ℏ ≡ 1) [91]. In the energy basis,

ρ̇ = −i[Ĥ, ρ] +
∑
k

Γk

(
LkρL

†
k −

1

2

{
L†
kLk, ρ

})
≡ Lρ. (A.1)

To obtain an effective non-Hermitian description of the system, the quantum jump terms
ΓkLkρL

†
k are dropped, yielding

ρ̇ = −i[Ĥ − i

2

∑
k

ΓkL
†
kLk︸ ︷︷ ︸

Ĥeff

, ρ] ≡ Leffρ. (A.2)

A nonlinear term can be added to account for normalization [92], originating from the non-
hermitian part

d

dt
tr{ρ} =

2

i
tr
(
ρĤnh

)
. (A.3)

Not discarding the quantum jump terms in Eq. (A.1) allows the investigation of Liouvil-
lian exceptional points. However, both approaches still assume that the initial Hamiltonian
is Hermitian. Recently, Refs. [39, 40, 41, 42] had modified the Lindblad equation to deal
with pseudohermitian hamiltonians. Note that their approaches are distinct to what we de-
velop in this work. Namely, our formalism is nonsecular and we treat the pseudohermiticity
of our hamiltonian and the interaction with the thermal bath microscopically. Regardless,
multiplying both sides of Eq. (A.1) with η gives

˙̃ρ = −i[Ĥ, ρ̃] +
∑
k

Γk

(
Lkρ̃L

‡
k −

1

2

{
L‡
kLk, ρ̃

})
, (A.4)
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where L‡
k = η−1L†η. This equation is most similar to our new formalism, so we used it to

benchmark our results. Specifically, following Refs. [37, 38], we vectorize the density matrix
as in the main text and define the Liouvillian as follows

LL = −i(ĤS ⊗ 1− 1⊗ ĤS) +
∑
ω

k(ω)
(
L‡
ω ⊗ Lω − 1

2
{L‡

ωLω ⊗ 1,1⊗ 1}
)

(A.5)

with k(ω) chosen to match with the Redfield analog. Since the Generalized Lindblad ap-
proach is done in the local basis, ω are the energy differences between the diagonals. A few
points of discussion are in order:

In Fig. (4.1), we compared the relaxation dynamics of the PT −symmetric two-level
Hamiltonian as predicted by PHRE and the Generalized Lindblad equation (GLE). In both
the broken and unbroken phases away from the EP, both methods agree qualitatively in
both the transient and steady-state regimes. Only very minor differences remain (e.g., in
panel (d) the populations oscillate to very close to one and zero, which is not so pronounced
in panel (b)). This is significant, as PHRE is done on the energy basis, where essentially
the system Hamiltonian is Hermitian, while the system interaction operator is nonhermitian
with complex elements. On the other hand, GLE is done on the local basis, where the
system Hamiltonian is nonhermitian while the system interaction operator is hermitian with
completely real elements. Even close to the HEP g = b (Fig. (A.1)) both methods agree.

In Fig. (A.2), we plot the eigenspectra of the Liouvillians of the PHRE and of the anal-
ogous GLE. Both are very much identical except for one aspect: the GLE does not have the
vanishing real part of the eigenvalue (blue crosses at the right panel). From numerical anal-
ysis it is found that this eigenvalue is proportional to the dephasing rate limω→0+ J(ω)n(ω).
However, if we set limω→0+ J(ω)n(ω) = 0 by hand, the eigenspectrum of the GLE simply
reduces to the Hamiltonian eigenspectrum. A nonvanishing dephasing rate is crucial for the
fully open Liouvillian (with quantum jump) description of the dynamics.
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Figure A.1: Simulations of density matrix evolution of the PT -symmetric gain-loss Hamilto-
nian Eq. (4.1) near the HEP, using PHRE (a) and (b) and and GLE (c) and (d). Parameters:
a = 0, b = 2, T = 4, J(ω) = 0.005ω.

Figure A.2: Comparison of the Imaginary (left) and Real (right) part of the Liouvillian
eigenspectrum of the PT -symmetric gain-loss Hamiltonian Eq. (4.1) calculated using PHRE
and GLE. Parameters: a = 0, b = 2, T = 4, J(ω) = 0.005ω.
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Appendix B

Generalized Non-hermitian Redfield
Master Equation

Starting from

ρ̇(t) =
1

iℏ
(Ĥρ− ρĤ†) (B.1)

and with

Ĥ = ĤS + ĤB︸ ︷︷ ︸
Ĥ0

+V̂ , (B.2)

we get

ρ̇(t) =
1

iℏ

(
(ĤS + ĤB + V̂ )ρ− ρ(Ĥ†

S + ĤB + V̂ )
)

=
1

iℏ

(
ĤSρ− ρĤ†

S + [ĤB + V̂ , ρ]
)

(B.3)

Let us proceed to transform to an improper interaction picture. First,

∂

∂t
(eiĤ0tρe−iĤ†

0t) = eiĤ0t
∂ρ

∂t
e−iĤ†

0t + iĤ0e
iĤ0tρe−iĤ†

0t − ieiĤ0tρe−iĤ†
0tĤ†

0

= eiĤ0t
∂ρ

∂t
e−iĤ†

0t + i(Ĥ0ρI − ρIĤ
†
0)

= eiĤ0t
∂ρ

∂t
e−iĤ†

0t + i(ĤSρI − ρIĤ
†
S + [ĤB, ρI ]) (B.4)

hence

ρ̇I(t) = −i[V̂I , ρI ] (B.5)

where the nonhermiticity is encoded when we transform back to the Schrödinger picture as

eiH0te−iH†
0t ̸= 1. It may be possible to proceed from here to develop a generalization of the

Redfield equation which is valid not only for pseudo-hermitian hamiltonians but for general
nonhermitian hamiltonians. This remains a topic for future study.
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Appendix C

Applications D: Asymmetric σy−type
Hamiltonian

Dynamics

Another interesting prototypical PHH is an asymmetric σy−type Hamiltonian Eq. (C.1),
this section highlights the emergence of some unphysical results when using the PHRE. The
asymmetric σy−type Hamiltonian reads

ĤS =

[
0 i

−iγ 0

]
, γ ∈ R. (C.1)

Here, η = σ̂y and the eigenvalues are ±√
γ, therefore there is an exceptional point at γ = 0.

Note that this two level Hamiltonian corresponds to a the motion of a simple harmonic
oscillator with frequency γ [93]. The nondissipative dynamics is simple enough to solve
analytically,

⟨1|ρ(t)|1⟩ = x cos2 (
√
γt)−

(x− 1) sin2
(√

γt
)

γ
, (C.2)

⟨2|ρ(t)|2⟩ = γx sin2 (
√
γt)− (x− 1) cos2 (

√
γt) , (C.3)

⟨1|ρ(t)|2⟩ = ⟨2|ρ(t)|1⟩ = −
(γx+ x− 1) sin

(
2
√
γt
)

2
√
γ

, (C.4)

when prepared similarly in the ρ(0) = x|g⟩⟨g| + (1 − x)|e⟩⟨e| state. This density matrix is
also hermitian at all times, but it is not trace-preserving for all γ ̸= 1.

Now, we couple it to a thermal bath via Ŝ = σx, and present numerical results in Fig.
(C.1). The density matrix is not normalized in that figure as we highlight a few important
points: (1) the density matrix in the transient regime may have negative populations. This
is in a sense more pathological than being non-trace-preserving, as the latter has a clear
physical intepretation, e.g., gain or loss. (2) In spite of this, the coherences are, for the range
of parameters swept, complex conjugate of each other. (3) At the transient regime, the system
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may accumulate imaginary populations. (4) For certain initial states, the steady-state may
even support negative populations. Similar observations are made as we change the coupling
matrix from Ŝ = σx to Ŝ = σz (see Fig. C.2) only that the imaginary populations are now in
the order of numerical accuracy. If otherwise not a feature of a hidden physics, this is the most
problematic model we study in this work. We briefly discuss a few possible reasons: while we
demand a physical preparation for σ, for this model, automatically either of (ση) or (ση)D

(diagonalized) becomes unphysical. Another possible reason is the additional approximations
employed in solving PHRE numerically, e.g., neglecting the imaginary part of the Laplace
transform of the bath correlation function (see Ch. 1). In sum, caution must be exercised in
applying the PHRE, with particular attention to models having limiting relations between
σ, ση, and (ση)D, as the pathologies of the Redfield equation may be amplified [94, 95].
Simulated with the generalized Lindblad equation (GLE), the dynamics for both initial
states in Fig. (C.1), is instead stagnant (no change). Further fundamental studies on the
theoretical aspects of PHRE are needed. We present the Liouvillian eigenspectrum of this
system in the next section, calculated using both PHRE and GLE.

Figure C.1: Numerical simulation using PHRE for the Hamiltonian in Eq. (C.1). In panel (a)
we prepare the system with σ(0) = 1

2
(1+σy) and in panel (b) we use σ(0) = |g⟩⟨g|Parameters:

γ = 0.5, T = 4, J(ω) = 0.005ω

Exceptional Points

We show here the eigenspectrum of the σy−type asymmetric Hamiltonian. Predictions of
PHRE agree with those of GLE, although for some unknown reason one is the negative of
the other.
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Figure C.2: Analog to Fig. (C.1) but Ŝ = σz.

Figure C.3: Real (panel a) and Imaginary (panel b) part of the Liouvillian eigenspectrum of
the σy−type asymmetric Hamiltonian Eq. (C.1) calculated using PHRE and GLE. Param-
eters: a = 0, b = 2, T = 4, JG(ωR, ωI) = 0.005ωR.
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[68] B. Peng, Şahin Kaya Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig,
S. Rotter, and L. Yang, Proceedings of the National Academy of Sciences 113, 6845
(2016), https://www.pnas.org/doi/pdf/10.1073/pnas.1603318113, URL https://

www.pnas.org/doi/abs/10.1073/pnas.1603318113.

[69] S. Dogra, A. A. Melnikov, and G. S. Paraoanu, Communications Physics 4, 26 (2021),
URL https://doi.org/10.1038/s42005-021-00534-2.

[70] D. Yu and F. Vollmer, Communications Physics 4, 77 (2021), URL https://doi.org/

10.1038/s42005-021-00575-7.

[71] Y.-L. Fang, J.-L. Zhao, Y. Zhang, D.-X. Chen, Q.-C. Wu, Y.-H. Zhou, C.-P. Yang, and
F. Nori, Communications Physics 4, 223 (2021).

[72] I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S. Savasta, F. Nori, and i. m.
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